Model Panel Discussion

Dorothy Koch Sunling Gong Mark Flanner

Arctic Workshop New York January 2007

Model Panel Discussion Dorothy Koch, Sunling Gong, Mark Flanner

Model uncertainties as well as global warming are amplified in the Arctic:

- i) Emission inputs (especially for fires)
- ii) transport to Arctic
- iii) removal in the Arctic environment
- iv) parameterization of climate effects
- *What measurements would help most to constrain models?

Where do (AeroCom) models distribute their loads?

AeroCom BC models in Denali and Barrow Alaska

The unexamined life is not worth living -Socrates

BC Models in Barrow, Alaska

BC Models in Denali, Alaska

DenaliNP (63.72N; 148.97W; 661m)

BC Models in Barrow, Alaska

Arctic **AOD** origins: GISS model

Koch and Hansen, JGR (2005); Koch et al., JGR, in press

Arctic surface concentration origins: GISS model

Koch and Hansen, JGR (2005); Koch et al., JGR, in press

Sectoral sources

Power.

Arctic BC sectoral origins: GISS model

Koch et al., JGR, in press

Sulfur trend check: model vs sulfur in Greenland ice core (Fischer *et al.*, 1998)

BC in Column (AOD)

Model Panel Discussion: What do models need?

- 1. Examination: Models need to be tested before doing climate simulations!
- 2. Snow and air concentrations
- 3. Information on ice/snow removal for individual species; Dry vs wet deposition?
- 4. Aerosols as a function of altitude: CALIPSO Including species information: aircraft, SP2??
- 5. Source attribution data (organic tracers of biomass/residential sources?)
- 6. Accurate fire emissions for individual years

CALIOP (CALIPSO) 16-day orbit pattern

GISS in Denali, Alaska

Species Parar Data source Species Parameter Graph Data source UIO CTM ExpA BC CONC3D SERIES ■ UIO GCM ExpA ▼ BC ▼ CON ▼ an2000 ▼ mALLYEAR ▼ ■ an9999 ■ mALLYEAR ■ AEROCOM models in DenaINF (63.72N : 148.97W : 661m) DenaINF (63 72N : 148 97W : 661m) Denali Black Carbon Species Parameter Graph ULAQ ExpA ■ BC ■ CONC3D ■ ■ UMI ExpA ▼ an9999 ▼ mALLYEAR ▼ ▼ an2000 ▼ mALLYEAR ▼ Red = modelDenaINF (63.72N : 148.97W : 661m) DenaINF (63.72N : 148.97W : 661m) Blue = obs surface conc Data source Graph BC CONC3D ARQM ExpB ▼ GISSCLIM Exp. an9999 | mALLYEAR | ▼ an9999 ▼ DenaliNP DenaINF (63.72N ; 148.97W ; 661m) DenaINF (63 72N ; 14 AROM_B MOZGN ExpA ■ BC ■ CONC3D ■ ▼ BC ▼ CC ▼ MPI_HAM ExpA ■ an2000 ■ mALLYEAR ■ DenaliNP ■ an2000 ■ mALLYEAR ■ Models with DenaINF (63.72N: 148.97W: 661m) **GISS** large polar **MOZART** fraction in let mar ter may sag sep oct nov dec Species Parar Data source Species Parameter Graph Data source ▼ BC ▼ CONC3D ▼ SERIES ▼ GOCART ▼ BC ▼ CON ■ an2000 ■ mALLYEAR ■ DenaliNP an2000 mALLYEAR w Data source Species Parameter Graph Data source Species Pan ■ BC ■ CONC3D ■ TM5 ExpB ▼ BC ▼ CC DanaINP (63.72N: 148.97W: 661m) DenaINF (63.72N: 148.97W: 661m) an2000 mALLYEAR ■ an2000 ■ mALLYEAR ■ CAM COCOUNT M-1909E M-1909E DenaINF (63 72N ; 148 97W ; 661m) DenaINF (63.72N: 148.97W; 661m) 84 TUNE 0.2

Species Parameter Species Parar Graph UIO CTM ExpA BC CONC3D ▼ UIO GCM ExpA BC CON ■ an2000 ■ mALLYEAR ■ ■ an9999 ■ mALLYEAR ■ AEROCOM models in DanaINF (63.72N ; 148.97W ; 661m) DenaINF (63 72N ; 148.97W ; 661m) Denali Black Carbon Species Parameter Graph ULAQ ExpA ■ BC ■ CONC3D ■ ■ UMI ExpA ▼ an9999 ▼ mALLYEAR ▼ ▼ an2000 ▼ mALLYEAR ▼ Red = modelDenaINF (63.72N : 148.97W : 661m) DenaINF (63.72N : 148.97W : 661m) Blue = obs surface conc Data source Species Parameter Data source Graph ARQM ExpB ■ BC ■ CONC3D ■ SERIES ▼ GISSCLIM ExpA ■ an9999 ■ mALLYEAR ■ DenaliNP ▼ an9999 ▼ mA DenaINF (63.72N: 148.97W: 661m) DenaINF (63 72N : 148 97W MOZGN ExpA ■ BC ■ CONC3D ■ ▼ MPI_HAM ExpA ▼ BC ▼ CC GSS_clm ■ an2000 ■ mALLYEAR ■ DenaliNP ■ an2000 ■ mALLYEAR ■ Models with DenaINF (63.72N: 148.97W: 661m) GISS large polar **MOZART** fraction jan feb mar epr may jun jul aug sep oct nov dec Species Parameter Data source Graph Data source Species Parar ■ BC ■ CONC3D ■ SERIES ■ GOCART ▼ BC ▼ CON Data source Species Parameter Graph Data source Species Pan ■ an2000 ■ mALLYEAR ■ an2000 mALLYEAR DenaliNP ▼ BC ▼ CC ■ BC ■ CONC3D ■ TM5 ExpB an2000 mALLYEAR ■ an2000 ■ mALLYEAR ■ DenaINP (63.72N: 148.97W: 661m) DenaINF (63.72N: 148.97W: 661m) DenaINF (63 72N ; 148 97W ; 661m) DenaINF (63.72N: 148.97W; 661m) tag top oct now dec

Data source

Data source

Species Parameter

Sprintars ExpA ▼ SO4 ▼ CONC3D ▼

